Сравните производительность и технические характеристики процессоров
Выберите первый процессор для сравнения
Выберите второй процессор для сравнения
Основные характеристики ядер | Epyc 8324PN | Opteron 280 |
---|---|---|
Количество модулей ядер | 12 | — |
Количество производительных ядер | 24 | 2 |
Потоков производительных ядер | 48 | 2 |
Базовая частота P-ядер | 3 ГГц | 2.4 ГГц |
Турбо-частота P-ядер | 3.7 ГГц | — |
Поддержка SMT/Hyper-Threading | Есть | Нет |
Информация об IPC | High IPC for server tasks | Low IPC |
Поддерживаемые инструкции | MMX, SSE, SSE2, SSE3, SSE4.1, SSE4.2, AVX, AVX2, AVX-512 | SSE, SSE2, SSE3, MMX, 3DNow! |
Поддержка AVX-512 | Нет | |
Технология автоматического буста | Precision Boost 2 | — |
Техпроцесс и архитектура | Epyc 8324PN | Opteron 280 |
---|---|---|
Техпроцесс | 5 нм | 130 нм |
Название техпроцесса | 5nm FinFET | 130nm SOI |
Процессорная линейка | Genoa | Italy |
Сегмент процессора | Server |
Кэш | Epyc 8324PN | Opteron 280 |
---|---|---|
Кэш L1 | Instruction: 8 x 64 KB | Data: 8 x 64 KB КБ | Instruction: 2 x 64 KB | Data: 2 x 64 KB КБ |
Кэш L2 | 0.512 МБ | 1 МБ |
Кэш L3 | 128 МБ | — |
Энергопотребление и тепловые характеристики | Epyc 8324PN | Opteron 280 |
---|---|---|
TDP | 130 Вт | 95 Вт |
Максимальная температура | 115 °C | 70 °C |
Рекомендации по охлаждению | Liquid cooling recommended | Air |
Память | Epyc 8324PN | Opteron 280 |
---|---|---|
Тип памяти | DDR5 | DDR |
Скорости памяти | Up to 4800 MHz МГц | 400 MHz МГц |
Количество каналов | 12 | 1 |
Максимальный объем | 6 ГБ | 32 ГБ |
Поддержка ECC | Есть | |
Поддержка регистровой памяти | Есть | Нет |
Профили разгона RAM | Есть |
Графика (iGPU) | Epyc 8324PN | Opteron 280 |
---|---|---|
Интегрированная графика | Нет |
Разгон и совместимость | Epyc 8324PN | Opteron 280 |
---|---|---|
Разблокированный множитель | Есть | Нет |
Поддержка PBO | Есть | Нет |
Тип сокета | — | 940 |
Совместимые чипсеты | AMD SP5 series | Socket 940 |
Совместимые ОС | Windows, Linux | Windows Server 2003, Linux |
PCIe и интерфейсы | Epyc 8324PN | Opteron 280 |
---|---|---|
Версия PCIe | 5.0 | 1.0 |
Безопасность | Epyc 8324PN | Opteron 280 |
---|---|---|
Функции безопасности | Advanced security features including SEV | None |
Secure Boot | Есть | Нет |
AMD Secure Processor | Есть | Нет |
SEV/SME поддержка | Есть | Нет |
Поддержка виртуализации | Есть | Нет |
Прочее | Epyc 8324PN | Opteron 280 |
---|---|---|
Дата выхода | 01.04.2025 | 01.01.2009 |
Комплектный кулер | Standard cooler | Standard |
Код продукта | 100-000000837-16 | OSA280DAA6BZ |
Страна производства | USA |
PassMark | Epyc 8324PN | Opteron 280 |
---|---|---|
PassMark Multi |
+994,77%
8375 points
|
765 points
|
PassMark Single |
+186,51%
1232 points
|
430 points
|
AMD Epyc 8324PN появился весной 2025 года как надежный исполнитель в ряду серверных чипов Epyc на базе Zen 4c. Его позиция — эффективный помощник для облачных провайдеров и центров обработки данных, которым важна плотность ядер на сокет при разумном бюджете. Архитектура Zen 4c, конечно, приносит свои особенности: ядра чуть компактнее и чуть менее шустрые в одиночных задачах против обычных Zen 4, но их количество на чипе позволяет отлично справляться с множеством параллельных запросов виртуализации или контейнерных задач.
Сегодня он выглядит скорее как практичное решение для специфичных задач, чем как универсальный чемпион производительности. Современные аналоги на более новых архитектурах обычно предлагают лучшее соотношение производительности на ватт или выше тактовые частоты, делая их привлекательнее для самых требовательных нагрузок. Для игр или сложной графики этот Epyc вряд ли кто-то купит — его сильная сторона в многопоточных серверных операциях. Энтузиасты порой пробовали подобные серверные чипы в домашних сборках ради уникальной конфигурации, но 8324PN из-за специфики ядер Zen 4c не стал массовым фаворитом для таких экспериментов — требовалась особая настройка и охлаждение.
По части аппетита к электричеству он неплохо сбалансирован для своей ниши — ощутимо прожорливее десктопных собратьев, но в рамках серверных стоек его не назовешь настоящей печью. Хотя стандартный боксовый кулер ему точно не товарищ, потребуется добротный серверный или мощный воздушный башенный. Сейчас он сохраняет актуальность прежде всего там, где приоритет — надежно и недорого обрабатывать множество легких фоновых задач или виртуальных машин. Если вдруг решитесь на него для специфичной домашней сборки ради ядер, будьте готовы к его серверному характеру и убедитесь, что ваши задачи действительно выиграют от его многопоточного потенциала.
Появившийся в начале 2009 года, Opteron 280 был одним из последних флагманов серии на устаревающем ядре Barcelona, позиционируясь как доступное решение для серверов начального уровня и рабочих станций, где нужна была надежная двухпроцессорная конфигурация без запредельных затрат. Интересно, что несмотря на серверное происхождение и сокет F, требующий спецматеринских плат, эти процессоры находили неожиданную популярность у энтузиастов, собиравших на их основе довольно мощные по тем временам и относительно бюджетные "домашние фермы" для рендеринга или вычислений. По современным меркам он, конечно, покажется очень медленным даже в сравнении с самыми простыми бюджетниками – сегодняшние чипы делают за секунду то, на что у него уходили минуты, да и многопоточная производительность у нынешних моделей несопоставимо выше при куда меньшем энергопотреблении.
Для игр того времени он подходил неплохо в паре с топовой видеокартой, но сейчас его хватит разве что на старые проекты или простенькие инди-игры; серьезные рабочие задачи вроде монтажа или сложного моделирования на нем будут мучительно долгими. Главная головная боль при использовании такого процессора сегодня – его прожорливость и нагрев: он потребляет как минимум втрое больше энергии, чем современные аналоги, требуя массивного и шумного кулера, а в двухпроцессорной системе проблема только усугубляется. Хотя сам по себе камень был надежным, его архитектура имела известные в то время "узкие места" в работе с памятью и приросте от многопоточности.
Сейчас Opteron 280 представляет скорее исторический интерес как пример эпохи, когда серверные чипы активно осваивали домашние ПК энтузиастов; для практического применения он устарел окончательно и безнадежно. Ставить его в новую систему нет никакого смысла – разве что как музейный экспонат в коллекцию ретро-железа для ностальгирующих по эре громоздких системных блоков с сердцем от сервера.
Сравнивая процессоры Epyc 8324PN и Opteron 280, можно отметить, что Epyc 8324PN относится к легкий сегменту. Epyc 8324PN превосходит Opteron 280 благодаря современной архитектуре, обеспечивая мощным производительность и энергоэффективным энергопотребление. Однако, Opteron 280 остаётся актуальным вариантом для базовых задачах.
Ответы на ключевые вопросы, которые помогут вам разобраться в мире процессоров, сделать осознанный выбор и избежать распространенных ошибок.
Сокет — несъёмный (BGA или аналогичный). Замена процессора в домашних условиях невозможна. Для апгрейда потребуется сервисный центр с соответствующим оборудованием.
Этот двухъядерный серверный процессор AMD Opteron 1218 HE привет из 2010 года работает на Socket AM2+ с частотой 2.4 ГГц по 45-нм техпроцессу, демонстрируя умеренный для задач своего времени потенциал при TDP 65 Вт. Его особенностью был интегрированный контроллер памяти DDR2, оптимизирующий доступ к данным, что делало его неплохим выбором для базовых серверов и рабочих станций того периода.
Этот десятиядерный серверный чип Ivy Bridge на 22 нм, выпущенный в начале 2014 года, уже ощутимо устарел по современным меркам производительности, хотя его TDP в 105 Вт по-прежнему неплох для базовых задач. Он потянет многопроцессорные конфигурации и готовился для надежных систем с поддержкой RAS, но его потенциал сегодня сильно ограничен возрастом и архитектурой.
Выпущенный в далёком 2007 году двухъядерный серверный ветеран AMD Opteron 8216 (Socket F, 2.4 ГГц) с интегрированным контроллером памяти DDR2 привнёс тогда важное новшество, однако сегодня его производительность и 125-ваттный тепловой пакет при техпроцессе 90 нм явно проигрывают современным решениям. Этот чип сейчас представляет лишь исторический интерес, демонстрируя солидный возраст и степень морального устаревания.
Этот энергоэффективный серверный процессор Xeon D-2712T 2023 года выпуска восьмиядерный кристалл на 10 нм техпроцессе с базовой частотой 1.9 ГГц и TDP 85 Вт неплохо справляется с задачами в условиях ограниченного охлаждения благодаря поддержке специализированных технологий вроде Intel TCC и TSX.
Этот двухъядерный процессор AMD Opteron 175 на сокете 939, работающий на частоте 2.2 ГГц по 90-нм техпроцессу (TDP 110 Вт), появился еще в октябре 2005 года и теперь сильно устарел морально. Его ключевая особенность — интегрированный контроллер памяти DDR1 без буферизации прямо на кристалле, что тогда серьезно повышало производительность серверных и рабочих систем.
Этот одноядерный процессор эпохи Windows XP, построенный на устаревшем 90-нм техпроцессе и работающий на частоте 2.6 ГГц в сокете F, сегодня выглядит крайне ограниченным по производительности и весьма энергоаппетитым для своей мощности. Его ключевой особенностью была поддержка аппаратной виртуализации AMD-V, что редкость для одноядерников того времени, но не спасает от сильного морального устаревания и высокого тепловыделения (TDP 85 Вт).
Представленный в 2009 году двухъядерный Intel Xeon 5110 на сокете 771 с частотой 1.6 ГГц и техпроцессом 45 нм при TDP 65 Вт сегодня считается глубоко устаревшим даже для базовых задач. Его специфической чертой была поддержка дорогой и энергоемкой памяти FB-DIMM, что было редкостью для массовых платформ того времени.
Этот двухъядерный серверный воин на сокете LGA1366, дебютировавший в 2009 году, работает на 2.53 ГГц с TDP 80 Вт по 45-нм техпроцессу и поддерживает ценную для надёжности ECC-память. Сегодня, однако, его производительность выглядит весьма скромно на фоне современных решений.
Поделитесь впечатлениями от использования этого процессора или задайте вопросы сообществу.
Здесь вы можете:
Ваш опыт может помочь другим пользователям сделать правильный выбор!